Холостой ход трансформатора.


        Режим, при котором вторичная обмотка трансформатора ра­зомкнута, а на зажимы первичной обмотки подано переменное на­пряжение, называется холостым ходом трансфор­матора.

       Если к первичной обмотке подвести напряжение U1 по ней по­течет ток, который обозначим I0. Этот ток создает магнитный поток Ф. Магнитный поток Ф, возбуждаемый первичной обмоткой, индук­тирует во вторичной обмотке ЭДС, величина которой равна Е2. Тот же самый магнитный поток индуктирует в первичной обмотке ЭДС=1. Небольшой ток I0, потребляемый первичной обмоткой трансформатора при холостом ходе, называется током холо­стого хода. Величина этого тока обычно составляет 3—10% от тока при номинальной нагрузке транс­форматора.

 

       Построим векторную диаграмму холостой работы   однофазного   трансформатора  без потерь (идеального) (рис. 190). Намагничи­вающий ток I0 создает магнитный поток Ф, который совпадает с током I0 по фазе. Как уже   указывалось,   магнитный поток Ф ин­дуктирует в первичной обмотке ЭДС=Е1 а во вторичной обмотке — ЭДС=Е2. На­помним, что всякая ЭДС, индуктируемая синусоидально   изменяющимся   магнитным потоком, отстает от потока по фазе на 90° (см. § 65). Поэтому векторы E1 и E2 мы от­кладываем под углом 90° от потока в сто­рону, обратную вращению векторов. Индук­тированную в первичной обмотке ЭДС Е1 уравновешивает напряжение сети  U1.

ЭДС  E1 и напряжение U1 равны и вза­имно  противоположны   (падение напряжения в первичной обмотке при этом режиме очень мало и им можно пренебречь).

Из векторной диаграммы видно, что ток I0, потребляемый идеальным трансформатором при холостой работе, отстает от напряжения сети U1 на 90°, т. е. является чисто реактивным.     

 

       У реального транс­форматора из-за потерь в стали (на вихревые токи и гистерезис) возникает сдвиг по фазе между током холостого хода I0 и маг­нитным потоком Ф, причем ток будет опережать магнитный по­ток. Ток холостого хода I0 трансформатора имеет две со­ставляющие (рис. 191):

1—ак­тивную Iа = I0*соsφ0, вызван­ную   потерями в  стали   (эта составляющая   очень   мала,   так   как  малы потери холостого хода);
2 -реактивную   Ip=I0*sinφ0,     называемую    током   намагничивания,   создающую   магнитный  поток Ф   и   совпадающую    с ним  по   фазе.   Так   как   активная    составляющая  I0cosφ0   мала, то намагничивающий ток почти равен   всему  току холостого хода I0.  Поэтому I0 является   почти  целиком   реактивным. В режиме холостого хода  ток во вторичной обмотке отсутствует и поэтому напряжение на зажимах вторичной обмотки равно ЭДС, индук­тированной в этой обмотке: U2=E

Ниже расмотрим :

Опыт холостого хода трансформатора.


   Холостым ходом трансформатора является такой предельный режим работы, когда его вторичная обмотка разомкнута и ток вто­ричной обмотки равен нулю (I2 = 0). Опыт холостого хода позволяет определить коэффициент трансформации, ток, потери и сопротивление холостого хода трансформатора.

       При опыте холостого хода первичную обмотку однофазного трансформатора включают в сеть переменного тока на номинальное напряжение U1. Под действием приложенного напряжения по обмотке протекает ток I1=I0 равный току холостого хода. Практически ток холостого хода равен примерно 5—10% номинального, а в трансформаторах малой мощности (десятки вольт-ампер) достигает значений 30% и более номинального. Для измерения тока холостого хода, приложенного к первичной обмотке напряжения и потребляемой мощности в цепь первичной обмотки трансформатора включены измерительные приборы (амперметр А, вольтметр V и ваттметр W). Вторичная обмотка трансформатора замкнута на вольтметр, сопротивление которого очень велико, так что ток вторичной обмотки практически равен нулю.

Ток холостого хода возбуждает в магнитопроводе трансформатора магнитный поток, который индуктирует ЭДС - Е1 и Е2 в первичной и во вторичной обмотках.

      Во вторичной обмотке трансформатора нет тока и, следовательно, нет падения напряжения в сопротивлении этой обмотки, поэтому ЭДС. равна напряжению, т. е. Е2=1/2. Поэтому ЭДС. вторичной обмотки определяется показанием вольтметра, включенного в эту обмотку.

  Ток холостого хода, протекающий в первичной обмотке, очень мал по сравнению с номинальным, так что падение напряжения в сопротивлении первичной обмотки очень мало по сравнению с приложенным напряжением. Поэтому приложенное напряжение практически уравновешивается ЭДС первичной обмотки и численные значения напряжения V и ЭДС. Е приблизительно равны. Следовательно, при опыте холостого хода ЭДС. первичной обмотки определится показанием вольтметра, включенного в ее цепь.

    Для большей точности измерения при опыте холостого хода первичной обмоткой служит обмотка низшего напряжения, а вторичной — обмотка высшего напряжения. Это объясняется тем, что для обмотки НН номинальный ток будет больше, чем для обмотки ВН. Так как ток холостого хода небольшой и составляет несколько процентов номинального, то при использовании обмотки НН в качест­ве первичной ток холостого хода окажется больше и может быть измерен более точно, чем в случае использования обмотки ВН в ка­честве первичной.

   Имея в виду равенства E2=U2 и E1~U1 коэффициент транс­формации можно определить отношением ЭДС. или чисел витков обмоток. Таким образом, при холостом ходе трансформатора коэффици­ент трансформации определится отношением показателей вольтмет­ров, включенных в первичной и вторичной обмотках.

  Для трехфазного трансформатора различают фазный и линей­ный коэффициенты трансформации. Фазный коэффициент транс­формации определяет соотношение чисел витков обмоток ВН и НН и равен отношению фазных напряжений. Линейный коэффициент трансформации равен отношению линейных напряжений на стороне ВН и НН.

 

Rambler's Top100




Рейтинг сайтов YandeG

Industry Overview

Eget diam faucibus dapibus.

click here for more